If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(P)=150P-P^2
We move all terms to the left:
(P)-(150P-P^2)=0
We get rid of parentheses
P^2-150P+P=0
We add all the numbers together, and all the variables
P^2-149P=0
a = 1; b = -149; c = 0;
Δ = b2-4ac
Δ = -1492-4·1·0
Δ = 22201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{22201}=149$$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-149)-149}{2*1}=\frac{0}{2} =0 $$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-149)+149}{2*1}=\frac{298}{2} =149 $
| x2-9x-52=0 | | 3x-19=6x+10 | | 4x-2x=63 | | (D^2+4D+53)^2(y)=0 | | -2x+17=-6x+65 | | F(x)=(-3x+7)/(x-5) | | 2x+7/3=3 | | 10-4(x/5-1)=x+11/2 | | 5(2x-3)-3(3x-7=5 | | z/9+8=8 | | 3y—11=10 | | 1/3x+7*x=154 | | r/11+8=-14 | | (-3)^n=3^11 | | 3x-1=-4(2-8) | | 6(2x-1)-12=3(7x+6 | | x^2+(1.6*x)^2-49=0 | | -4y+8=4(2y-2(-16+8y) | | -4y+8=4(2y-2(-16+8y | | (3x-2)(x-1)(1-4x)=0 | | 13x^2-7100x+420000=0 | | 7x(x^2+3x-11)=0 | | 2*x/2=21 | | 3^3y=8 | | (x-1/x)^2=0 | | 3x+5x+7=5 | | (2x-9)=10x+5 | | (x-1/x)^2-9(x-1/x)+20=0 | | 2x-1/4=3x+1/8 | | 3x^2+8x-435=0 | | (2x/12)/(x/12)=x/12 | | 50-2x=7x+24 |